Source code for taxcalc.records

"""
Tax-Calculator tax-filing-unit Records class.
"""
# CODING-STYLE CHECKS:
# pycodestyle records.py
# pylint --disable=locally-disabled records.py

import os
from pathlib import Path
import numpy as np
import pandas as pd
from taxcalc.data import Data
from taxcalc.growfactors import GrowFactors
from taxcalc.utils import read_egg_csv


[docs] class Records(Data): """ Records is a subclass of the abstract Data class, and therefore, inherits its methods (none of which are shown here). Constructor for the tax-filing-unit Records class. Parameters ---------- data: string or Pandas DataFrame or None string describes CSV file in which records data reside; DataFrame already contains records data; default value is None. NOTE: when using custom data, set this argument to a DataFrame. NOTE: to use your own data for a specific year with Tax-Calculator, be sure to read the documentation on creating your own data file and then construct a Records object like this: mydata = pd.read_csv(<mydata.csv>) myrec = Records(data=mydata, start_year=<mydata_year>, gfactors=None, weights=None) NOTE: data=None is allowed but the returned instance contains only the data variable information in the specified VARINFO file. start_year: integer or None specifies calendar year of the input data; default value is None. Note that if specifying your own data (see above NOTE) as being a custom data set, be sure to explicitly set start_year to the custom data's calendar year. gfactors: GrowFactors class instance or None containing record data growth (or extrapolation) factors. default value is None. weights: Pandas DataFrame or None DataFrame contains data weights; None creates empty weights DataFrame; default value is None NOTE: when using custom weights, set this argument to a DataFrame. NOTE: see weights_scale documentation below. adjust_ratios: Pandas DataFrame or None DataFrame contains transposed/no-index adjustment ratios; None creates empty adjustment-ratios DataFrame; default value is None. NOTE: when using custom ratios, set this argument to a DataFrame. NOTE: if specifying a DataFrame, set adjust_ratios to my_df defined as: my_df = pd.read_csv('<my_ratios.csv>', index_col=0).transpose() exact_calculations: boolean specifies whether or not exact tax calculations are done without any smoothing of stair-step provisions in income tax law; default value is false. weights_scale: float specifies the weights scaling factor used to convert contents of weights file into the s006 variable. PUF and CPS input data generated in the taxdata repository use a weights_scale of 0.01, while TMD input data generated in the tax-microdata repository use a 1.0 weights_scale value. default value is 0.01. Raises ------ ValueError: if data is not the appropriate type. if taxpayer and spouse variables do not add up to filing-unit total. if dividends is less than qualified dividends. if gfactors is not None or a GrowFactors class instance. if start_year is not an integer. if files cannot be found. Returns ------- class instance: Records Notes ----- Use Records.cps_constructor() to get a Records object instantiated with CPS input data developed in the taxdata repository. Use Records.puf_constructor() to get a Records object instantiated with PUF input data developed in the taxdata repository. Use Records.tmd_constructor() to get a Records object instantiated with TMD input data developed in the tax-microdata repository. """ # suppress pylint warning about constructor having too many arguments: # pylint: disable=too-many-arguments # suppress pylint warnings about uppercase variable names: # pylint: disable=invalid-name # suppress pylint warnings about too many class instance attributes: # pylint: disable=too-many-instance-attributes PUFCSV_YEAR = 2011 CPSCSV_YEAR = 2014 TMDCSV_YEAR = 2021 CODE_PATH = os.path.abspath(os.path.dirname(__file__)) VARINFO_FILE_NAME = 'records_variables.json' VARINFO_FILE_PATH = CODE_PATH def __init__(self, data=None, start_year=None, gfactors=None, weights=None, adjust_ratios=None, exact_calculations=False, weights_scale=0.01): # pylint: disable=too-many-positional-arguments # pylint: disable=no-member,too-many-branches if isinstance(weights, str): weights = os.path.join(Records.CODE_PATH, weights) super().__init__(data, start_year, gfactors, weights, weights_scale) if data is None: return # because there are no data # read adjustment ratios self.ADJ = None self._read_ratios(adjust_ratios) # specify exact value based on exact_calculations self.exact[:] = np.where(exact_calculations is True, 1, 0) # specify FLPDYR value based on start_year self.FLPDYR.fill(start_year) # check for valid MARS values if not np.all(np.logical_and(np.greater_equal(self.MARS, 1), np.less_equal(self.MARS, 5))): raise ValueError('not all MARS values in [1,5] range') # create variables derived from MARS, which is in MUST_READ_VARS self.num[:] = np.where(self.MARS == 2, 2, 1) self.sep[:] = np.where(self.MARS == 3, 2, 1) # check for valid EIC values if not np.all(np.logical_and(np.greater_equal(self.EIC, 0), np.less_equal(self.EIC, 3))): raise ValueError('not all EIC values in [0,3] range') # check that three sets of split-earnings variables have valid values msg = 'expression "{0} == {0}p + {0}s" is not true for every record' tol = 0.020001 # handles "%.2f" rounding errors if not np.allclose(self.e00200, (self.e00200p + self.e00200s), rtol=0.0, atol=tol): raise ValueError(msg.format('e00200')) if not np.allclose(self.e00900, (self.e00900p + self.e00900s), rtol=0.0, atol=tol): raise ValueError(msg.format('e00900')) if not np.allclose(self.e02100, (self.e02100p + self.e02100s), rtol=0.0, atol=tol): raise ValueError(msg.format('e02100')) # check that spouse income variables have valid values nospouse = self.MARS != 2 zeros = np.zeros_like(self.MARS[nospouse]) msg = '{} is not always zero for non-married filing unit' if not np.allclose(self.e00200s[nospouse], zeros): raise ValueError(msg.format('e00200s')) if not np.allclose(self.e00900s[nospouse], zeros): raise ValueError(msg.format('e00900s')) if not np.allclose(self.e02100s[nospouse], zeros): raise ValueError(msg.format('e02100s')) if not np.allclose(self.k1bx14s[nospouse], zeros): raise ValueError(msg.format('k1bx14s')) # check that ordinary dividends are no less than qualified dividends other_dividends = np.maximum(0., self.e00600 - self.e00650) if not np.allclose(self.e00600, self.e00650 + other_dividends, rtol=0.0, atol=tol): msg = 'expression "e00600 >= e00650" is not true for every record' raise ValueError(msg) del other_dividends # check that total pension income is no less than taxable pension inc nontaxable_pensions = np.maximum(0., self.e01500 - self.e01700) if not np.allclose(self.e01500, self.e01700 + nontaxable_pensions, rtol=0.0, atol=tol): msg = 'expression "e01500 >= e01700" is not true for every record' raise ValueError(msg) del nontaxable_pensions # check that PT_SSTB_income has valid value if not np.all(np.logical_and(np.greater_equal(self.PT_SSTB_income, 0), np.less_equal(self.PT_SSTB_income, 1))): raise ValueError('not all PT_SSTB_income values are 0 or 1')
[docs] @staticmethod def cps_constructor( data=None, gfactors=GrowFactors(), exact_calculations=False ): """ Static method returns a Records object instantiated with CPS input data. This is a convenience method that eliminates the need to specify all the details of the CPS input data. """ if data is None: data = os.path.join(Records.CODE_PATH, 'cps.csv.gz') if gfactors is None: weights = None else: weights = os.path.join(Records.CODE_PATH, 'cps_weights.csv.gz') return Records( data=data, start_year=Records.CPSCSV_YEAR, gfactors=gfactors, weights=weights, adjust_ratios=None, exact_calculations=exact_calculations, weights_scale=0.01, )
@staticmethod def puf_constructor( data='puf.csv', gfactors=GrowFactors(), weights='puf_weights.csv.gz', ratios='puf_ratios.csv', exact_calculations=False ): # pragma: no cover """ Static method returns a Records object instantiated with PUF input data. This is a convenience method that eliminates the need to specify all the details of the PUF input data. """ assert isinstance(data, str) assert isinstance(gfactors, GrowFactors) assert isinstance(weights, str) assert isinstance(ratios, str) return Records( data=pd.read_csv(data), start_year=Records.PUFCSV_YEAR, gfactors=gfactors, weights=pd.read_csv(weights), adjust_ratios=pd.read_csv(ratios, index_col=0).transpose(), exact_calculations=exact_calculations, weights_scale=0.01, ) @staticmethod def tmd_constructor( data_path: Path, weights_path: Path, growfactors: Path | GrowFactors, exact_calculations=False, ): # pragma: no cover """ Static method returns a Records object instantiated with TMD input data. This is a convenience method that eliminates the need to specify all the details of the TMD input data. """ assert isinstance(data_path, Path) assert isinstance(weights_path, Path) if isinstance(growfactors, Path): growfactors = GrowFactors(growfactors_filename=str(growfactors)) else: assert isinstance(growfactors, GrowFactors) return Records( data=pd.read_csv(data_path), start_year=Records.TMDCSV_YEAR, weights=pd.read_csv(weights_path), gfactors=growfactors, adjust_ratios=None, exact_calculations=exact_calculations, weights_scale=1.0, )
[docs] def increment_year(self): """ Add one to current year, and also does extrapolation, reweighting, adjusting for new current year. """ super().increment_year() self.FLPDYR.fill(self.current_year) # pylint: disable=no-member # apply variable adjustment ratios self._adjust(self.current_year)
[docs] @staticmethod def read_cps_data(): """ Return data in cps.csv.gz as a Pandas DataFrame. """ fname = os.path.join(Records.CODE_PATH, 'cps.csv.gz') if os.path.isfile(fname): cpsdf = pd.read_csv(fname) else: # find file in conda package cpsdf = read_egg_csv(fname) # pragma: no cover return cpsdf
# ----- begin private methods of Records class -----
[docs] def _extrapolate(self, year): """ Apply to variables the grow factor values for specified calendar year. """ # pylint: disable=too-many-statements,no-member # put values in local dictionary gfv = {} for name in GrowFactors.VALID_NAMES: gfv[name] = self.gfactors.factor_value(name, year) # apply values to Records variables self.PT_binc_w2_wages *= gfv['AWAGE'] self.e00200 *= gfv['AWAGE'] self.e00200p *= gfv['AWAGE'] self.e00200s *= gfv['AWAGE'] self.pencon_p *= gfv['AWAGE'] self.pencon_s *= gfv['AWAGE'] self.overtime_income *= gfv['AWAGE'] self.tip_income *= gfv['AWAGE'] self.e00300 *= gfv['AINTS'] self.e00400 *= gfv['AINTS'] self.e00600 *= gfv['ADIVS'] self.e00650 *= gfv['ADIVS'] self.e00700 *= gfv['ATXPY'] self.e00800 *= gfv['ATXPY'] self.e00900s[:] = np.where(self.e00900s >= 0, self.e00900s * gfv['ASCHCI'], self.e00900s * gfv['ASCHCL']) self.e00900p[:] = np.where(self.e00900p >= 0, self.e00900p * gfv['ASCHCI'], self.e00900p * gfv['ASCHCL']) self.e00900[:] = self.e00900p + self.e00900s self.e01100 *= gfv['ACGNS'] self.e01200 *= gfv['ACGNS'] self.e01400 *= gfv['ATXPY'] self.e01500 *= gfv['ATXPY'] self.e01700 *= gfv['ATXPY'] self.e02000[:] = np.where(self.e02000 >= 0, self.e02000 * gfv['ASCHEI'], self.e02000 * gfv['ASCHEL']) self.e02100 *= gfv['ASCHF'] self.e02100p *= gfv['ASCHF'] self.e02100s *= gfv['ASCHF'] self.e02300 *= gfv['AUCOMP'] self.e02400 *= gfv['ASOCSEC'] self.e03150 *= gfv['ATXPY'] self.e03210 *= gfv['ATXPY'] self.e03220 *= gfv['ATXPY'] self.e03230 *= gfv['ATXPY'] self.e03270 *= gfv['ACPIM'] self.e03240 *= gfv['ATXPY'] self.e03290 *= gfv['ACPIM'] self.e03300 *= gfv['ATXPY'] self.e03400 *= gfv['ATXPY'] self.e03500 *= gfv['ATXPY'] self.e07240 *= gfv['ATXPY'] self.e07260 *= gfv['ATXPY'] self.e07300 *= gfv['ABOOK'] self.e07400 *= gfv['ABOOK'] self.p08000 *= gfv['ATXPY'] self.e09700 *= gfv['ATXPY'] self.e09800 *= gfv['ATXPY'] self.e09900 *= gfv['ATXPY'] self.e11200 *= gfv['ATXPY'] # ITEMIZED DEDUCTIONS self.e17500 *= gfv['ACPIM'] self.e18400 *= gfv['ATXPY'] self.e18500 *= gfv['ATXPY'] self.e19200 *= gfv['AIPD'] self.e19800 *= gfv['ATXPY'] self.e20100 *= gfv['ATXPY'] self.e20400 *= gfv['ATXPY'] self.g20500 *= gfv['ATXPY'] # CAPITAL GAINS self.p22250 *= gfv['ACGNS'] self.p23250 *= gfv['ACGNS'] self.e24515 *= gfv['ACGNS'] self.e24518 *= gfv['ACGNS'] # SCHEDULE E self.e26270 *= gfv['ASCHEI'] self.e27200 *= gfv['ASCHEI'] self.k1bx14p *= gfv['ASCHEI'] self.k1bx14s *= gfv['ASCHEI'] # MISCELLANOUS SCHEDULES self.e07600 *= gfv['ATXPY'] self.e32800 *= gfv['ATXPY'] self.e58990 *= gfv['ATXPY'] self.e62900 *= gfv['ATXPY'] self.e87530 *= gfv['ATXPY'] self.e87521 *= gfv['ATXPY'] self.cmbtp *= gfv['ATXPY'] self.auto_loan_interest *= gfv['ATXPY'] # BENEFITS self.other_ben *= gfv['ABENOTHER'] self.mcare_ben *= gfv['ABENMCARE'] self.mcaid_ben *= gfv['ABENMCAID'] self.ssi_ben *= gfv['ABENSSI'] self.snap_ben *= gfv['ABENSNAP'] self.wic_ben *= gfv['ABENWIC'] self.housing_ben *= gfv['ABENHOUSING'] self.tanf_ben *= gfv['ABENTANF'] self.vet_ben *= gfv['ABENVET'] # remove local dictionary del gfv
[docs] def _adjust(self, year): """ Adjust value of PUF income variables to match SOI distributions Note: adjustment must leave variables as numpy.ndarray type """ # pylint: disable=no-member if self.ADJ.size > 0: # pragma: no cover # Interest income self.e00300 *= self.ADJ[f'INT{year}'].iloc[self.agi_bin].values
[docs] def _read_ratios(self, ratios): """ Read Records PUF-related adjustment ratios using specified transposed/no-index DataFrame as ratios or create empty DataFrame if ratios is None. """ assert ratios is None or isinstance(ratios, pd.DataFrame) if ratios is None: setattr(self, 'ADJ', pd.DataFrame({'nothing': []})) return if isinstance(ratios, pd.DataFrame): # pragma: no cover assert 'INT2013' in ratios.columns # check for transposed assert ratios.index.name is None # check for no-index ADJ = ratios self.ADJ = pd.DataFrame() if ADJ.index.name != 'agi_bin': ADJ.index.name = 'agi_bin' setattr(self, 'ADJ', ADJ.astype(np.float32))