Source code for taxcalc.taxcalcio

"""
Tax-Calculator Input-Output class.
"""
# CODING-STYLE CHECKS:
# pycodestyle taxcalcio.py
# pylint --disable=locally-disabled taxcalcio.py

import os
import gc
import copy
import sqlite3
import numpy as np
import pandas as pd
import paramtools
from taxcalc.policy import Policy
from taxcalc.records import Records
from taxcalc.consumption import Consumption
from taxcalc.growdiff import GrowDiff
from taxcalc.growfactors import GrowFactors
from taxcalc.calculator import Calculator
from taxcalc.utils import (delete_file, write_graph_file,
                           add_quantile_table_row_variable,
                           unweighted_sum, weighted_sum)


[docs] class TaxCalcIO(): """ Constructor for the Tax-Calculator Input-Output class. TaxCalcIO class constructor call must be followed by init() call. Parameters ---------- input_data: string or Pandas DataFrame string is name of INPUT file that is CSV formatted containing variable names in the Records USABLE_READ_VARS set, or Pandas DataFrame is INPUT data containing variable names in the Records USABLE_READ_VARS set. INPUT vsrisbles not in the Records USABLE_READ_VARS set can be present but are ignored. tax_year: integer calendar year for which taxes will be computed for INPUT. baseline: None or string None implies baseline policy is current-law policy, or string is name of optional BASELINE file that is a JSON reform file. reform: None or string None implies no policy reform (current-law policy), or string is name of optional REFORM file(s). assump: None or string None implies economic assumptions are standard assumptions, or string is name of optional ASSUMP file. outdir: None or string None implies output files written to current directory, or string is name of optional output directory Returns ------- class instance: TaxCalcIO """ # pylint: disable=too-many-instance-attributes def __init__(self, input_data, tax_year, baseline, reform, assump, outdir=None): # pylint: disable=too-many-arguments,too-many-locals # pylint: disable=too-many-branches,too-many-statements self.errmsg = '' # check name and existence of INPUT file inp = 'x' self.puf_input_data = False self.cps_input_data = False self.tmd_input_data = False self.tmd_weights = None self.tmd_gfactor = None if isinstance(input_data, str): # remove any leading directory path from INPUT filename fname = os.path.basename(input_data) # check if fname ends with ".csv" if fname.endswith('.csv'): inp = '{}-{}'.format(fname[:-4], str(tax_year)[2:]) else: msg = 'INPUT file name does not end in .csv' self.errmsg += 'ERROR: {}\n'.format(msg) # check existence of INPUT file self.puf_input_data = input_data.endswith('puf.csv') self.cps_input_data = input_data.endswith('cps.csv') self.tmd_input_data = input_data.endswith('tmd.csv') if not self.cps_input_data and not os.path.isfile(input_data): msg = 'INPUT file could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) # if tmd_input_data is True, construct weights and gfactor paths if self.tmd_input_data: # pragma: no cover tmd_dir = os.path.dirname(input_data) if 'TMD_AREA' in os.environ: area = os.environ['TMD_AREA'] wfile = f'{area}_tmd_weights.csv.gz' inp = f'{fname[:-4]}_{area}-{str(tax_year)[2:]}' else: # using national weights wfile = 'tmd_weights.csv.gz' self.tmd_weights = os.path.join(tmd_dir, wfile) self.tmd_gfactor = os.path.join(tmd_dir, 'tmd_growfactors.csv') if not os.path.isfile(self.tmd_weights): msg = f'weights file {self.tmd_weights} could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) if not os.path.isfile(self.tmd_gfactor): msg = f'gfactor file {self.tmd_gfactor} could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) elif isinstance(input_data, pd.DataFrame): inp = 'df-{}'.format(str(tax_year)[2:]) else: msg = 'INPUT is neither string nor Pandas DataFrame' self.errmsg += 'ERROR: {}\n'.format(msg) # check name and existence of BASELINE file bas = '-x' if baseline is None: bas = '-#' elif isinstance(baseline, str): # remove any leading directory path from BASELINE filename fname = os.path.basename(baseline) # check if fname ends with ".json" if fname.endswith('.json'): bas = '-{}'.format(fname[:-5]) else: msg = 'BASELINE file name does not end in .json' self.errmsg += 'ERROR: {}\n'.format(msg) # check existence of BASELINE file if not os.path.isfile(baseline): msg = 'BASELINE file could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) else: msg = 'TaxCalcIO.ctor: baseline is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # check name(s) and existence of REFORM file(s) ref = '-x' if reform is None: self.specified_reform = False ref = '-#' elif isinstance(reform, str): self.specified_reform = True # split any compound reform into list of simple reforms refnames = [] reforms = reform.split('+') for rfm in reforms: # remove any leading directory path from rfm filename fname = os.path.basename(rfm) # check if fname ends with ".json" if not fname.endswith('.json'): msg = '{} does not end in .json'.format(fname) self.errmsg += 'ERROR: REFORM file name {}\n'.format(msg) # check existence of REFORM file if not os.path.isfile(rfm): msg = '{} could not be found'.format(rfm) self.errmsg += 'ERROR: REFORM file {}\n'.format(msg) # add fname to list of refnames used in output file names refnames.append(fname) # create (possibly compound) reform name for output file names ref = '-' num_refnames = 0 for refname in refnames: num_refnames += 1 if num_refnames > 1: ref += '+' ref += '{}'.format(refname[:-5]) else: msg = 'TaxCalcIO.ctor: reform is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # check name and existence of ASSUMP file asm = '-x' if assump is None: asm = '-#' elif isinstance(assump, str): # remove any leading directory path from ASSUMP filename fname = os.path.basename(assump) # check if fname ends with ".json" if fname.endswith('.json'): asm = '-{}'.format(fname[:-5]) else: msg = 'ASSUMP file name does not end in .json' self.errmsg += 'ERROR: {}\n'.format(msg) # check existence of ASSUMP file if not os.path.isfile(assump): msg = 'ASSUMP file could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) else: msg = 'TaxCalcIO.ctor: assump is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # check name and existence of OUTDIR if outdir is None: valid_outdir = True elif isinstance(outdir, str): # check existence of OUTDIR if os.path.isdir(outdir): valid_outdir = True else: valid_outdir = False msg = 'OUTDIR could not be found' self.errmsg += 'ERROR: {}\n'.format(msg) else: valid_outdir = False msg = 'TaxCalcIO.ctor: outdir is neither None nor str' self.errmsg += 'ERROR: {}\n'.format(msg) # create OUTPUT file name and delete any existing output files output_filename = '{}{}{}{}.csv'.format(inp, bas, ref, asm) if outdir is None: self._output_filename = output_filename delete_old_files = True elif valid_outdir: self._output_filename = os.path.join(outdir, output_filename) delete_old_files = True else: delete_old_files = False if delete_old_files: delete_file(self._output_filename) delete_file(self._output_filename.replace('.csv', '.db')) delete_file(self._output_filename.replace('.csv', '-doc.text')) delete_file(self._output_filename.replace('.csv', '-tab.text')) delete_file(self._output_filename.replace('.csv', '-atr.html')) delete_file(self._output_filename.replace('.csv', '-mtr.html')) delete_file(self._output_filename.replace('.csv', '-pch.html')) # initialize variables whose values are set in init method self.calc = None self.calc_base = None self.param_dict = None self.policy_dicts = [] def init(self, input_data, tax_year, baseline, reform, assump, aging_input_data, exact_calculations): """ TaxCalcIO class post-constructor method that completes initialization. Parameters ---------- First five are same as the first five of the TaxCalcIO constructor: input_data, tax_year, baseline, reform, assump. aging_input_data: boolean whether or not to extrapolate Records data from data year to tax_year. exact_calculations: boolean specifies whether or not exact tax calculations are done without any smoothing of "stair-step" provisions in the tax law. """ # pylint: disable=too-many-arguments,too-many-locals # pylint: disable=too-many-statements,too-many-branches self.errmsg = '' # get policy parameter dictionary from --baseline file basedict = Calculator.read_json_param_objects(baseline, None) # get assumption sub-dictionaries paramdict = Calculator.read_json_param_objects(None, assump) # get policy parameter dictionaries from --reform file(s) policydicts = [] if self.specified_reform: reforms = reform.split('+') for ref in reforms: pdict = Calculator.read_json_param_objects(ref, None) policydicts.append(pdict['policy']) paramdict['policy'] = policydicts[0] # remember parameters for reform documentation self.param_dict = paramdict self.policy_dicts = policydicts # create gdiff_baseline object gdiff_baseline = GrowDiff() try: gdiff_baseline.update_growdiff(paramdict['growdiff_baseline']) except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # create GrowFactors base object that incorporates gdiff_baseline if self.tmd_input_data: gfactors_base = GrowFactors(self.tmd_gfactor) # pragma: no cover else: gfactors_base = GrowFactors() gdiff_baseline.apply_to(gfactors_base) # specify gdiff_response object gdiff_response = GrowDiff() try: gdiff_response.update_growdiff(paramdict['growdiff_response']) except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # create GrowFactors ref object that has all gdiff objects applied if self.tmd_input_data: gfactors_ref = GrowFactors(self.tmd_gfactor) # pragma: no cover else: gfactors_ref = GrowFactors() gdiff_baseline.apply_to(gfactors_ref) gdiff_response.apply_to(gfactors_ref) # create Policy objects: # ... the baseline Policy object base = Policy(gfactors=gfactors_base) try: base.implement_reform(basedict['policy'], print_warnings=True, raise_errors=False) for _, errors in base.parameter_errors.items(): self.errmsg += "\n".join(errors) except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # ... the reform Policy object if self.specified_reform: pol = Policy(gfactors=gfactors_ref) for poldict in policydicts: try: pol.implement_reform(poldict, print_warnings=True, raise_errors=False) if self.errmsg: self.errmsg += "\n" for _, errors in pol.parameter_errors.items(): self.errmsg += "\n".join(errors) except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() else: pol = Policy(gfactors=gfactors_base) # create Consumption object con = Consumption() try: con.update_consumption(paramdict['consumption']) except paramtools.ValidationError as valerr_msg: self.errmsg += valerr_msg.__str__() # check for valid tax_year value if tax_year < pol.start_year: msg = 'tax_year {} less than policy.start_year {}' msg = msg.format(tax_year, pol.start_year) self.errmsg += 'ERROR: {}\n'.format(msg) if tax_year > pol.end_year: msg = 'tax_year {} greater than policy.end_year {}' msg = msg.format(tax_year, pol.end_year) self.errmsg += 'ERROR: {}\n'.format(msg) # any errors imply cannot proceed with calculations if self.errmsg: return # set policy to tax_year pol.set_year(tax_year) base.set_year(tax_year) # read input file contents into Records objects if aging_input_data: if self.cps_input_data: recs = Records.cps_constructor( gfactors=gfactors_ref, exact_calculations=exact_calculations ) recs_base = Records.cps_constructor( gfactors=gfactors_base, exact_calculations=exact_calculations ) elif self.tmd_input_data: # pragma: no cover wghts = pd.read_csv(self.tmd_weights) recs = Records( data=pd.read_csv(input_data), start_year=Records.TMDCSV_YEAR, weights=wghts, gfactors=gfactors_ref, adjust_ratios=None, exact_calculations=exact_calculations, weights_scale=1.0, ) recs_base = Records( data=pd.read_csv(input_data), start_year=Records.TMDCSV_YEAR, weights=wghts, gfactors=gfactors_base, adjust_ratios=None, exact_calculations=exact_calculations, weights_scale=1.0, ) else: # if not {cps|tmd}_input_data but aging_input_data: puf recs = Records( data=input_data, gfactors=gfactors_ref, exact_calculations=exact_calculations ) recs_base = Records( data=input_data, gfactors=gfactors_base, exact_calculations=exact_calculations ) else: # input_data are raw data that are not being aged recs = Records(data=input_data, start_year=tax_year, gfactors=None, weights=None, adjust_ratios=None, exact_calculations=exact_calculations) recs_base = copy.deepcopy(recs) if tax_year < recs.data_year: msg = 'tax_year {} less than records.data_year {}' msg = msg.format(tax_year, recs.data_year) self.errmsg += 'ERROR: {}\n'.format(msg) # create Calculator objects self.calc = Calculator(policy=pol, records=recs, verbose=True, consumption=con, sync_years=aging_input_data) self.calc_base = Calculator(policy=base, records=recs_base, verbose=False, consumption=con, sync_years=aging_input_data)
[docs] def custom_dump_variables(self, tcdumpvars_str): """ Return set of variable names extracted from tcdumpvars_str, which contains the contents of the tcdumpvars file in the current directory. Also, builds self.errmsg if any custom variables are not valid. """ assert isinstance(tcdumpvars_str, str) self.errmsg = '' # change some common delimiter characters into spaces dump_vars_str = tcdumpvars_str.replace(',', ' ') dump_vars_str = dump_vars_str.replace(';', ' ') dump_vars_str = dump_vars_str.replace('|', ' ') # split dump_vars_str into a list of dump variables dump_vars_list = dump_vars_str.split() # check that all dump_vars_list items are valid recs_vinfo = Records(data=None) # contains records VARINFO only valid_set = recs_vinfo.USABLE_READ_VARS | recs_vinfo.CALCULATED_VARS for var in dump_vars_list: if var not in valid_set: msg = 'invalid variable name in tcdumpvars file: {}' msg = msg.format(var) self.errmsg += 'ERROR: {}\n'.format(msg) # add essential variables even if not on custom list if 'RECID' not in dump_vars_list: dump_vars_list.append('RECID') if 'FLPDYR' not in dump_vars_list: dump_vars_list.append('FLPDYR') # convert list into a set and return return set(dump_vars_list)
[docs] def tax_year(self): """ Return calendar year for which TaxCalcIO calculations are being done. """ return self.calc.current_year
[docs] def output_filepath(self): """ Return full path to output file named in TaxCalcIO constructor. """ dirpath = os.path.abspath(os.path.dirname(__file__)) return os.path.join(dirpath, self._output_filename)
[docs] def analyze(self, writing_output_file=False, output_tables=False, output_graphs=False, dump_varset=None, output_dump=False, output_sqldb=False): """ Conduct tax analysis. Parameters ---------- writing_output_file: boolean whether or not to generate and write output file output_tables: boolean whether or not to generate and write distributional tables to a text file output_graphs: boolean whether or not to generate and write HTML graphs of average and marginal tax rates by income percentile dump_varset: set custom set of variables to include in dump and sqldb output; None implies include all variables in dump and sqldb output output_dump: boolean whether or not to replace standard output with all input and calculated variables using their Tax-Calculator names output_sqldb: boolean whether or not to write SQLite3 database with two tables (baseline and reform) each containing same output as written by output_dump to a csv file Returns ------- Nothing """ # pylint: disable=too-many-arguments,too-many-branches,too-many-locals if self.puf_input_data and self.calc.reform_warnings: warn = 'PARAMETER VALUE WARNING(S): {}\n{}{}' # pragma: no cover print( # pragma: no cover warn.format('(read documentation for each parameter)', self.calc.reform_warnings, 'CONTINUING WITH CALCULATIONS...') ) calc_base_calculated = False self.calc.calc_all() if output_dump or output_sqldb: # might need marginal tax rates (mtr_paytax, mtr_inctax, _) = self.calc.mtr(wrt_full_compensation=False, calc_all_already_called=True) self.calc_base.calc_all() calc_base_calculated = True (mtr_paytax_base, mtr_inctax_base, _) = self.calc_base.mtr(wrt_full_compensation=False, calc_all_already_called=True) else: # definitely do not need marginal tax rates mtr_paytax = None mtr_inctax = None mtr_paytax_base = None mtr_inctax_base = None # extract output if writing_output_file if writing_output_file: self.write_output_file(output_dump, dump_varset, mtr_paytax, mtr_inctax) self.write_doc_file() # optionally write --sqldb output to SQLite3 database if output_sqldb: self.write_sqldb_file( dump_varset, mtr_paytax, mtr_inctax, mtr_paytax_base, mtr_inctax_base ) # optionally write --tables output to text file if output_tables: if not calc_base_calculated: self.calc_base.calc_all() calc_base_calculated = True self.write_tables_file() # optionally write --graphs output to HTML files if output_graphs: if not calc_base_calculated: self.calc_base.calc_all() calc_base_calculated = True self.write_graph_files()
[docs] def write_output_file(self, output_dump, dump_varset, mtr_paytax, mtr_inctax): """ Write output to CSV-formatted file. """ if output_dump: outdf = self.dump_output( self.calc, dump_varset, mtr_inctax, mtr_paytax ) column_order = sorted(outdf.columns) # place RECID at start of column_order list assert 'RECID' in column_order, 'RECID not in dump output list' column_order.remove('RECID') column_order.insert(0, 'RECID') weight_vname = 's006' else: outdf = self.minimal_output() column_order = outdf.columns weight_vname = 'WEIGHT' assert len(outdf.index) == self.calc.array_len if self.tmd_input_data: # pragma: no cover if weight_vname in outdf: weights = outdf[weight_vname].round(5) outdf = outdf.round(2) if weight_vname in outdf: outdf[weight_vname] = weights outdf.to_csv(self._output_filename, columns=column_order, index=False) else: outdf.to_csv(self._output_filename, columns=column_order, index=False, float_format='%.2f') del outdf gc.collect()
[docs] def write_doc_file(self): """ Write reform documentation to text file. """ if len(self.policy_dicts) <= 1: doc = Calculator.reform_documentation(self.param_dict) else: doc = Calculator.reform_documentation(self.param_dict, self.policy_dicts[1:]) doc_fname = self._output_filename.replace('.csv', '-doc.text') with open(doc_fname, 'w', encoding='utf-8') as dfile: dfile.write(doc)
[docs] def write_sqldb_file(self, dump_varset, mtr_paytax, mtr_inctax, mtr_paytax_base, mtr_inctax_base): """ Write dump output to SQLite3 database table dump. """ db_fname = self._output_filename.replace('.csv', '.db') dbcon = sqlite3.connect(db_fname) # write baseline table outdf = self.dump_output( self.calc_base, dump_varset, mtr_inctax_base, mtr_paytax_base ) assert len(outdf.index) == self.calc.array_len outdf.to_sql('baseline', dbcon, if_exists='replace', index=False) # write reform table outdf = self.dump_output( self.calc, dump_varset, mtr_inctax, mtr_paytax ) assert len(outdf.index) == self.calc.array_len outdf.to_sql('reform', dbcon, if_exists='replace', index=False) dbcon.close() del outdf gc.collect()
[docs] def write_tables_file(self): """ Write tables to text file. """ # pylint: disable=too-many-locals tab_fname = self._output_filename.replace('.csv', '-tab.text') # skip tables if there are not some positive weights if self.calc_base.total_weight() <= 0.: with open(tab_fname, 'w', encoding='utf-8') as tfile: msg = 'No tables because sum of weights is not positive\n' tfile.write(msg) return # create list of results for nontax variables # - weights don't change with reform # - expanded_income may change, so always use baseline expanded income nontax_vars = ['s006', 'expanded_income'] nontax = [self.calc_base.array(var) for var in nontax_vars] # create list of results for tax variables from reform Calculator tax_vars = ['iitax', 'payrolltax', 'lumpsum_tax', 'combined'] reform = [self.calc.array(var) for var in tax_vars] # create DataFrame with tax distribution under reform dist = nontax + reform # using expanded_income under baseline policy all_vars = nontax_vars + tax_vars distdf = pd.DataFrame(data=np.column_stack(dist), columns=all_vars) # create DataFrame with tax differences (reform - baseline) base = [self.calc_base.array(var) for var in tax_vars] change = [(reform[idx] - base[idx]) for idx in range(0, len(tax_vars))] diff = nontax + change # using expanded_income under baseline policy diffdf = pd.DataFrame(data=np.column_stack(diff), columns=all_vars) # write each kind of distributional table with open(tab_fname, 'w', encoding='utf-8') as tfile: TaxCalcIO.write_decile_table(distdf, tfile, tkind='Reform Totals') tfile.write('\n') TaxCalcIO.write_decile_table(diffdf, tfile, tkind='Differences') # delete intermediate DataFrame objects del distdf del diffdf gc.collect()
[docs] @staticmethod def write_decile_table(dfx, tfile, tkind='Totals'): """ Write to tfile the tkind decile table using dfx DataFrame. """ dfx = add_quantile_table_row_variable(dfx, 'expanded_income', 10, decile_details=False, pop_quantiles=False, weight_by_income_measure=False) gdfx = dfx.groupby('table_row', as_index=False, observed=True) rtns_series = gdfx.apply( unweighted_sum, 's006', include_groups=False ).values[:, 1] xinc_series = gdfx.apply( weighted_sum, 'expanded_income', include_groups=False ).values[:, 1] itax_series = gdfx.apply( weighted_sum, 'iitax', include_groups=False ).values[:, 1] ptax_series = gdfx.apply( weighted_sum, 'payrolltax', include_groups=False ).values[:, 1] htax_series = gdfx.apply( weighted_sum, 'lumpsum_tax', include_groups=False ).values[:, 1] ctax_series = gdfx.apply( weighted_sum, 'combined', include_groups=False ).values[:, 1] # write decile table to text file row = 'Weighted Tax {} by Baseline Expanded-Income Decile\n' tfile.write(row.format(tkind)) rowfmt = '{}{}{}{}{}{}\n' row = rowfmt.format(' Returns', ' ExpInc', ' IncTax', ' PayTax', ' LSTax', ' AllTax') tfile.write(row) row = rowfmt.format(' (#m)', ' ($b)', ' ($b)', ' ($b)', ' ($b)', ' ($b)') tfile.write(row) rowfmt = '{:9.2f}{:10.1f}{:10.1f}{:10.1f}{:10.1f}{:10.1f}\n' for decile in range(0, 10): row = '{:2d}'.format(decile) row += rowfmt.format(rtns_series[decile] * 1e-6, xinc_series[decile] * 1e-9, itax_series[decile] * 1e-9, ptax_series[decile] * 1e-9, htax_series[decile] * 1e-9, ctax_series[decile] * 1e-9) tfile.write(row) row = ' A' row += rowfmt.format(rtns_series.sum() * 1e-6, xinc_series.sum() * 1e-9, itax_series.sum() * 1e-9, ptax_series.sum() * 1e-9, htax_series.sum() * 1e-9, ctax_series.sum() * 1e-9) tfile.write(row) del gdfx del rtns_series del xinc_series del itax_series del ptax_series del htax_series del ctax_series gc.collect()
[docs] def write_graph_files(self): """ Write graphs to HTML files. All graphs contain same number of filing units in each quantile. """ pos_wght_sum = self.calc.total_weight() > 0.0 fig = None # percentage-aftertax-income-change graph pch_fname = self._output_filename.replace('.csv', '-pch.html') pch_title = 'PCH by Income Percentile' if pos_wght_sum: fig = self.calc_base.pch_graph(self.calc, pop_quantiles=False) write_graph_file(fig, pch_fname, pch_title) else: reason = 'No graph because sum of weights is not positive' TaxCalcIO.write_empty_graph_file(pch_fname, pch_title, reason) # average-tax-rate graph atr_fname = self._output_filename.replace('.csv', '-atr.html') atr_title = 'ATR by Income Percentile' if pos_wght_sum: fig = self.calc_base.atr_graph(self.calc, pop_quantiles=False) write_graph_file(fig, atr_fname, atr_title) else: reason = 'No graph because sum of weights is not positive' TaxCalcIO.write_empty_graph_file(atr_fname, atr_title, reason) # marginal-tax-rate graph mtr_fname = self._output_filename.replace('.csv', '-mtr.html') mtr_title = 'MTR by Income Percentile' if pos_wght_sum: fig = self.calc_base.mtr_graph( self.calc, alt_e00200p_text='Taxpayer Earnings', pop_quantiles=False ) write_graph_file(fig, mtr_fname, mtr_title) else: reason = 'No graph because sum of weights is not positive' TaxCalcIO.write_empty_graph_file(mtr_fname, mtr_title, reason) if fig: del fig gc.collect()
[docs] @staticmethod def write_empty_graph_file(fname, title, reason): """ Write HTML graph file with title but no graph for specified reason. """ txt = ('<html>\n' '<head><title>{}</title></head>\n' '<body><center<h1>{}</h1></center></body>\n' '</html>\n').format(title, reason) with open(fname, 'w', encoding='utf-8') as gfile: gfile.write(txt)
[docs] def minimal_output(self): """ Extract minimal output and return it as Pandas DataFrame. """ varlist = ['RECID', 'YEAR', 'WEIGHT', 'INCTAX', 'LSTAX', 'PAYTAX'] odict = {} scalc = self.calc odict['RECID'] = scalc.array('RECID') # id for tax filing unit odict['YEAR'] = self.tax_year() # tax calculation year odict['WEIGHT'] = scalc.array('s006') # sample weight odict['INCTAX'] = scalc.array('iitax') # federal income taxes odict['LSTAX'] = scalc.array('lumpsum_tax') # lump-sum tax odict['PAYTAX'] = scalc.array('payrolltax') # payroll taxes (ee+er) odf = pd.DataFrame(data=odict, columns=varlist) return odf
[docs] def dump_output(self, calcx, dump_varset, mtr_inctax, mtr_paytax): """ Extract dump output and return it as Pandas DataFrame. """ recs_vinfo = Records(data=None) # contains only Records VARINFO if dump_varset is None: varset = recs_vinfo.USABLE_READ_VARS | recs_vinfo.CALCULATED_VARS else: varset = dump_varset # create and return dump output DataFrame odf = pd.DataFrame() for varname in varset: vardata = calcx.array(varname) if varname in recs_vinfo.INTEGER_VARS: odf[varname] = vardata else: # specify precision that can handle small TMD area weights odf[varname] = vardata.round(5) odf = odf.copy() # specify mtr values in percentage terms if 'mtr_inctax' in varset: odf['mtr_inctax'] = (mtr_inctax * 100).round(2) if 'mtr_paytax' in varset: odf['mtr_paytax'] = (mtr_paytax * 100).round(2) # specify tax calculation year odf['FLPDYR'] = self.tax_year() return odf