"""
PUBLIC low-level utility functions for Tax-Calculator.
"""
# CODING-STYLE CHECKS:
# pycodestyle utils.py
# pylint --disable=locally-disabled utils.py
#
# pylint: disable=too-many-lines
import os
import math
import json
import copy
import collections
import importlib.resources as implibres
import numpy as np
import pandas as pd
import bokeh.plotting as bp
from bokeh.models import PrintfTickFormatter
from taxcalc.utilsprvt import (weighted_mean,
wage_weighted, agi_weighted,
expanded_income_weighted)
# Items in the DIST_TABLE_COLUMNS list below correspond to the items in the
# DIST_TABLE_LABELS list below; this correspondence allows us to use this
# labels list to map a label to the correct column in a distribution table.
DIST_VARIABLES = ['expanded_income', 'c00100', 'aftertax_income', 'standard',
'c04470', 'c04600', 'c04800', 'taxbc', 'c62100', 'c09600',
'c05800', 'surtax', 'othertaxes', 'refund', 'c07100',
'iitax', 'payrolltax', 'combined', 's006', 'ubi',
'benefit_cost_total', 'benefit_value_total', 'XTOT']
DIST_TABLE_COLUMNS = ['count',
'c00100',
'count_StandardDed',
'standard',
'count_ItemDed',
'c04470',
'c04600',
'c04800',
'taxbc',
'c62100',
'count_AMT',
'c09600',
'c05800',
'c07100',
'othertaxes',
'refund',
'iitax',
'payrolltax',
'combined',
'ubi',
'benefit_cost_total',
'benefit_value_total',
'expanded_income',
'aftertax_income']
DIST_TABLE_LABELS = ['Number of Returns',
'AGI',
'Number of Returns Claiming Standard Deduction',
'Standard Deduction',
'Number of Returns Itemizing',
'Itemized Deduction',
'Personal Exemption',
'Taxable Income',
'Regular Tax',
'AMTI',
'Number of Returns with AMT',
'AMT',
'Tax before Credits',
'Non-refundable Credits',
'Other Taxes',
'Refundable Credits',
'Individual Income Tax Liabilities',
'Payroll Tax Liabilities',
'Combined Payroll and Individual Income Tax Liabilities',
'Universal Basic Income',
'Total Cost of Benefits',
'Consumption Value of Benefits',
'Expanded Income',
'After-Tax Expanded Income']
# Items in the DIFF_TABLE_COLUMNS list below correspond to the items in the
# DIFF_TABLE_LABELS list below; this correspondence allows us to use this
# labels list to map a label to the correct column in a difference table.
DIFF_VARIABLES = ['expanded_income', 'c00100', 'aftertax_income',
'iitax', 'payrolltax', 'combined', 's006', 'XTOT',
'ubi', 'benefit_cost_total', 'benefit_value_total']
DIFF_TABLE_COLUMNS = ['count',
'tax_cut',
'perc_cut',
'tax_inc',
'perc_inc',
'mean',
'tot_change',
'share_of_change',
'ubi',
'benefit_cost_total',
'benefit_value_total',
'pc_aftertaxinc']
DIFF_TABLE_LABELS = ['Number of Returns',
'Number of Returns with Tax Cut',
'Percent with Tax Cut',
'Number of Returns with Tax Increase',
'Percent with Tax Increase',
'Average Tax Change',
'Total Tax Difference',
'Share of Overall Change',
'Universal Basic Income',
'Total Cost of Benefits',
'Consumption Value of Benefits',
'% Change in After-Tax Income']
DECILE_ROW_NAMES = ['0-10n', '0-10z', '0-10p',
'10-20', '20-30', '30-40', '40-50',
'50-60', '60-70', '70-80', '80-90', '90-100',
'ALL',
'90-95', '95-99', 'Top 1%']
STANDARD_ROW_NAMES = ['<$0K', '=$0K', '$0-10K', '$10-20K', '$20-30K',
'$30-40K', '$40-50K', '$50-75K', '$75-100K',
'$100-200K', '$200-500K', '$500-1000K', '>$1000K', 'ALL']
STANDARD_INCOME_BINS = [-9e99, -1e-9, 1e-9, 10e3, 20e3, 30e3, 40e3, 50e3,
75e3, 100e3, 200e3, 500e3, 1e6, 9e99]
SOI_AGI_BINS = [-9e99, 1.0, 5e3, 10e3, 15e3, 20e3, 25e3, 30e3, 40e3, 50e3,
75e3, 100e3, 200e3, 500e3, 1e6, 1.5e6, 2e6, 5e6, 10e6, 9e99]
[docs]
def unweighted_sum(dframe, col_name):
"""
Return unweighted sum of Pandas DataFrame col_name items.
"""
return dframe[col_name].sum()
[docs]
def weighted_sum(dframe, col_name):
"""
Return weighted sum of Pandas DataFrame col_name items.
"""
return (dframe[col_name] * dframe['s006']).sum()
[docs]
def add_quantile_table_row_variable(dframe, income_measure, num_quantiles,
pop_quantiles=False,
decile_details=False,
weight_by_income_measure=False):
"""
Add a variable to specified Pandas DataFrame, dframe, that specifies
the table row and is called 'table_row'.
When weight_by_income_measure=False, the rows hold an equal number of
people if pop_quantiles=True or an equal number of filing units if
pop_quantiles=False.
When weight_by_income_measure=True, the rows hold an equal number
of income dollars.
This function assumes that specified dframe contains columns for
the specified income_measure and for sample weights, s006, and when
pop_quantiles=True, number of exemptions, XTOT.
. When num_quantiles is 10 and decile_details is True,
the bottom decile is broken up into three subgroups
(neg, zero, and pos income_measure)
and the top decile is broken into three subgroups
(90-95, 95-99, and top 1%).
"""
# pylint: disable=too-many-arguments,too-many-locals
assert isinstance(dframe, pd.DataFrame)
assert income_measure in dframe
assert 's006' in dframe
if decile_details and num_quantiles != 10:
msg = 'decile_details is True when num_quantiles is {}'
raise ValueError(msg.format(num_quantiles))
if pop_quantiles:
assert not weight_by_income_measure
assert 'XTOT' in dframe
# adjust income measure by square root of filing unit size
adj = np.sqrt(np.where(dframe['XTOT'] == 0, 1, dframe['XTOT']))
dframe['adj_income_measure'] = np.divide(dframe[income_measure], adj)
else:
dframe['adj_income_measure'] = dframe[income_measure]
dframe.sort_values(by='adj_income_measure', inplace=True)
if weight_by_income_measure:
dframe['cumsum_temp'] = np.cumsum(
np.multiply(dframe[income_measure].values, dframe['s006'].values)
)
min_cumsum = dframe['cumsum_temp'].values[0]
else:
if pop_quantiles:
dframe['cumsum_temp'] = np.cumsum(
np.multiply(dframe['XTOT'].values, dframe['s006'].values)
)
else:
dframe['cumsum_temp'] = np.cumsum(
dframe['s006'].values
)
min_cumsum = 0. # because s006 and XTOT values are non-negative
max_cumsum = dframe['cumsum_temp'].values[-1]
cumsum_range = max_cumsum - min_cumsum
bin_width = cumsum_range / float(num_quantiles)
bin_edges = list(min_cumsum +
np.arange(0, (num_quantiles + 1)) * bin_width)
bin_edges[-1] = 9e99 # raise top of last bin to include all observations
bin_edges[0] = -9e99 # lower bottom of 1st bin to include all observations
num_bins = num_quantiles
if decile_details:
assert bin_edges[1] > 1e-9 # bin_edges[1] is top of bottom decile
neg_im = np.less_equal(dframe[income_measure], -1e-9)
neg_wght = dframe['s006'][neg_im].sum()
zer_im = np.logical_and(
np.greater(dframe[income_measure], -1e-9),
np.less(dframe[income_measure], 1e-9)
)
zer_wght = dframe['s006'][zer_im].sum()
bin_edges.insert(1, neg_wght + zer_wght) # top of zeros
bin_edges.insert(1, neg_wght) # top of negatives
bin_edges.insert(-1, bin_edges[-2] + 0.5 * bin_width) # top of 90-95
bin_edges.insert(-1, bin_edges[-2] + 0.4 * bin_width) # top of 95-99
num_bins += 4
labels = range(1, (num_bins + 1))
dframe['table_row'] = pd.cut(dframe['cumsum_temp'], bin_edges,
right=False, labels=labels)
dframe.drop('cumsum_temp', axis=1, inplace=True)
return dframe
[docs]
def add_income_table_row_variable(dframe, income_measure, bin_edges):
"""
Add a variable to specified Pandas DataFrame, dframe, that specifies the
table row and is called 'table_row'. The rows are defined by the
specified bin_edges function argument. Note that the bin groupings
are LEFT INCLUSIVE, which means that bin_edges=[1,2,3,4] implies these
three bin groupings: [1,2), [2,3), [3,4).
Parameters
----------
dframe: Pandas DataFrame
the object to which we are adding bins
income_measure: String
specifies income variable used to construct bins
bin_edges: list of scalar bin edges
Returns
-------
dframe: Pandas DataFrame
the original input plus the added 'table_row' column
"""
assert isinstance(dframe, pd.DataFrame)
assert income_measure in dframe
assert isinstance(bin_edges, list)
dframe['table_row'] = pd.cut(dframe[income_measure],
bin_edges, right=False)
return dframe
[docs]
def get_sums(dframe):
"""
Compute unweighted sum of items in each column of Pandas DataFrame, dframe.
Returns
-------
Pandas Series object containing column sums indexed by dframe column names.
"""
sums = dict()
for col in dframe.columns.values.tolist():
if col != 'table_row':
sums[col] = dframe[col].sum()
return pd.Series(sums, name='ALL')
[docs]
def create_distribution_table(vdf, groupby, income_measure,
pop_quantiles=False, scaling=True):
"""
Get results from vdf, sort them by expanded_income based on groupby,
and return them as a table.
Parameters
----------
vdf : Pandas DataFrame including columns named in DIST_TABLE_COLUMNS list
for example, an object returned from the distribution_table_dataframe
function in the Calculator distribution_tables method
groupby : String object
options for input: 'weighted_deciles' or
'standard_income_bins' or 'soi_agi_bins'
determines how the rows in the resulting Pandas DataFrame are sorted
income_measure: String object
options for input: 'expanded_income' or 'expanded_income_baseline'
determines which variable is used to sort rows
pop_quantiles : boolean
specifies whether or not weighted_deciles contain an equal number
of people (True) or an equal number of filing units (False)
scaling : boolean
specifies whether or not table entry values are scaled
Returns
-------
distribution table as a Pandas DataFrame with DIST_TABLE_COLUMNS and
groupby rows.
NOTE: when groupby is 'weighted_deciles', the returned table has three
extra rows containing top-decile detail consisting of statistics
for the 0.90-0.95 quantile range (bottom half of top decile),
for the 0.95-0.99 quantile range, and
for the 0.99-1.00 quantile range (top one percent); and the
returned table splits the bottom decile into filing units with
negative (denoted by a 0-10n row label),
zero (denoted by a 0-10z row label), and
positive (denoted by a 0-10p row label) values of the
specified income_measure.
"""
# pylint: disable=too-many-statements,too-many-branches
# nested function that returns calculated column statistics as a DataFrame
def stat_dataframe(gdf):
"""
Returns calculated distribution table column statistics derived from
the specified grouped Dataframe object, gdf.
"""
unweighted_columns = ['count', 'count_StandardDed',
'count_ItemDed', 'count_AMT']
sdf = pd.DataFrame()
for col in DIST_TABLE_COLUMNS:
if col in unweighted_columns:
sdf[col] = gdf.apply(
unweighted_sum, col, include_groups=False
).values[:, 1]
else:
sdf[col] = gdf.apply(
weighted_sum, col, include_groups=False
).values[:, 1]
return sdf
# main logic of create_distribution_table
assert isinstance(vdf, pd.DataFrame)
assert groupby in ('weighted_deciles',
'standard_income_bins',
'soi_agi_bins')
assert income_measure in ('expanded_income', 'expanded_income_baseline')
assert income_measure in vdf
assert 'table_row' not in vdf
if pop_quantiles:
assert groupby == 'weighted_deciles'
# sort the data given specified groupby and income_measure
if groupby == 'weighted_deciles':
dframe = add_quantile_table_row_variable(vdf, income_measure, 10,
pop_quantiles=pop_quantiles,
decile_details=True)
elif groupby == 'standard_income_bins':
dframe = add_income_table_row_variable(vdf, income_measure,
STANDARD_INCOME_BINS)
elif groupby == 'soi_agi_bins':
dframe = add_income_table_row_variable(vdf, income_measure,
SOI_AGI_BINS)
# construct grouped DataFrame
gdf = dframe.groupby('table_row', observed=False, as_index=False)
dist_table = stat_dataframe(gdf)
del dframe['table_row']
# compute sum row
sum_row = get_sums(dist_table)[dist_table.columns]
# handle placement of sum_row in table
if groupby == 'weighted_deciles':
# compute top-decile row
lenindex = len(dist_table.index)
assert lenindex == 14 # rows should be indexed from 0 to 13
topdec_row = get_sums(dist_table[11:lenindex])[dist_table.columns]
# move top-decile detail rows to make room for topdec_row and sum_row
dist_table = dist_table.reindex(index=range(0, lenindex + 2))
dist_table.iloc[15] = dist_table.iloc[13]
dist_table.iloc[14] = dist_table.iloc[12]
dist_table.iloc[13] = dist_table.iloc[11]
dist_table.iloc[12] = sum_row
dist_table.iloc[11] = topdec_row
del topdec_row
else:
dist_table.loc["ALL"] = sum_row
del sum_row
# ensure dist_table columns are in correct order
assert dist_table.columns.values.tolist() == DIST_TABLE_COLUMNS
# add row names to table if using weighted_deciles or standard_income_bins
if groupby == 'weighted_deciles':
rownames = DECILE_ROW_NAMES
elif groupby == 'standard_income_bins':
rownames = STANDARD_ROW_NAMES
else:
rownames = None
if rownames:
assert len(dist_table.index) == len(rownames)
dist_table.index = rownames
del rownames
# delete intermediate Pandas DataFrame objects
del gdf
del dframe
# scale table elements
if scaling:
count_vars = ['count',
'count_StandardDed',
'count_ItemDed',
'count_AMT']
for col in dist_table.columns:
# if col in count_vars:
# dist_table[col] = np.round(dist_table[col] * 1e-6, 2)
# else:
# dist_table[col] = np.round(dist_table[col] * 1e-9, 3)
if col in count_vars:
dist_table[col] *= 1e-6
dist_table.round({col: 2})
else:
dist_table[col] *= 1e-9
dist_table.round({col: 3})
# return table as Pandas DataFrame
vdf.sort_index(inplace=True)
return dist_table
[docs]
def create_difference_table(vdf1, vdf2, groupby, tax_to_diff,
pop_quantiles=False):
"""
Get results from two different vdf, construct tax difference results,
and return the difference statistics as a table.
Parameters
----------
vdf1 : Pandas DataFrame including columns named in DIFF_VARIABLES list
for example, object returned from a dataframe(DIFF_VARIABLES) call
on the basesline Calculator object
vdf2 : Pandas DataFrame including columns in the DIFF_VARIABLES list
for example, object returned from a dataframe(DIFF_VARIABLES) call
on the reform Calculator object
groupby : String object
options for input: 'weighted_deciles' or
'standard_income_bins' or 'soi_agi_bins'
determines how the rows in the resulting Pandas DataFrame are sorted
tax_to_diff : String object
options for input: 'iitax', 'payrolltax', 'combined'
specifies which tax to difference
pop_quantiles : boolean
specifies whether or not weighted_deciles contain an equal number
of people (True) or an equal number of filing units (False)
Returns
-------
difference table as a Pandas DataFrame with DIFF_TABLE_COLUMNS and
groupby rows.
NOTE: when groupby is 'weighted_deciles', the returned table has three
extra rows containing top-decile detail consisting of statistics
for the 0.90-0.95 quantile range (bottom half of top decile),
for the 0.95-0.99 quantile range, and
for the 0.99-1.00 quantile range (top one percent); and the
returned table splits the bottom decile into filing units with
negative (denoted by a 0-10n row label),
zero (denoted by a 0-10z row label), and
positive (denoted by a 0-10p row label) values of the
specified income_measure.
"""
# pylint: disable=too-many-statements,too-many-locals,too-many-branches
# nested function that creates dataframe containing additive statistics
def additive_stats_dataframe(gdf):
"""
Nested function that returns additive stats DataFrame derived from gdf
"""
def count_lt_zero(dframe, col_name, tolerance=-0.001):
"""
Return count sum of negative Pandas DataFrame col_name items.
"""
return dframe[dframe[col_name] < tolerance]['count'].sum()
def count_gt_zero(dframe, col_name, tolerance=0.001):
"""
Return count sum of positive Pandas DataFrame col_name items.
"""
return dframe[dframe[col_name] > tolerance]['count'].sum()
# start of additive_stats_dataframe code
sdf = pd.DataFrame()
sdf['count'] = gdf.apply(
unweighted_sum, 'count', include_groups=False
).values[:, 1]
sdf['tax_cut'] = gdf.apply(
count_lt_zero, 'tax_diff', include_groups=False
).values[:, 1]
sdf['tax_inc'] = gdf.apply(
count_gt_zero, 'tax_diff', include_groups=False
).values[:, 1]
sdf['tot_change'] = gdf.apply(
weighted_sum, 'tax_diff', include_groups=False
).values[:, 1]
sdf['ubi'] = gdf.apply(
weighted_sum, 'ubi', include_groups=False
).values[:, 1]
sdf['benefit_cost_total'] = gdf.apply(
weighted_sum, 'benefit_cost_total', include_groups=False
).values[:, 1]
sdf['benefit_value_total'] = gdf.apply(
weighted_sum, 'benefit_value_total', include_groups=False
).values[:, 1]
sdf['atinc1'] = gdf.apply(
weighted_sum, 'atinc1', include_groups=False
).values[:, 1]
sdf['atinc2'] = gdf.apply(
weighted_sum, 'atinc2', include_groups=False
).values[:, 1]
return sdf
# main logic of create_difference_table
assert groupby in ('weighted_deciles',
'standard_income_bins',
'soi_agi_bins')
if pop_quantiles:
assert groupby == 'weighted_deciles'
assert 'expanded_income' in vdf1
assert tax_to_diff in ('iitax', 'payrolltax', 'combined')
assert 'table_row' not in vdf1
assert 'table_row' not in vdf2
assert isinstance(vdf1, pd.DataFrame)
assert isinstance(vdf2, pd.DataFrame)
assert np.allclose(vdf1['XTOT'], vdf2['XTOT']) # check rows are the same
assert np.allclose(vdf1['s006'], vdf2['s006']) # units and in same order
baseline_expanded_income = 'expanded_income_baseline'
df2 = copy.deepcopy(vdf2)
df2[baseline_expanded_income] = vdf1['expanded_income']
df2['tax_diff'] = df2[tax_to_diff] - vdf1[tax_to_diff]
for col in ['ubi', 'benefit_cost_total', 'benefit_value_total']:
df2[col] = df2[col] - vdf1[col]
df2['atinc1'] = vdf1['aftertax_income']
df2['atinc2'] = vdf2['aftertax_income']
# specify count variable in df2
if pop_quantiles:
df2['count'] = np.multiply(df2['s006'], df2['XTOT'])
else:
df2['count'] = df2['s006']
# add table_row column to df2 given specified groupby and income_measure
if groupby == 'weighted_deciles':
dframe = add_quantile_table_row_variable(
df2, baseline_expanded_income, 10,
pop_quantiles=pop_quantiles, decile_details=True)
elif groupby == 'standard_income_bins':
dframe = add_income_table_row_variable(
df2, baseline_expanded_income, STANDARD_INCOME_BINS)
elif groupby == 'soi_agi_bins':
dframe = add_income_table_row_variable(
df2, baseline_expanded_income, SOI_AGI_BINS)
del df2
# create grouped Pandas DataFrame
gdf = dframe.groupby('table_row', as_index=False, observed=False)
# create additive difference table statistics from gdf
diff_table = additive_stats_dataframe(gdf)
# calculate additive statistics on sums row
sum_row = get_sums(diff_table)[diff_table.columns]
# handle placement of sum_row in table
if groupby == 'weighted_deciles':
# compute top-decile row
lenindex = len(diff_table.index)
assert lenindex == 14 # rows should be indexed from 0 to 13
topdec_row = get_sums(diff_table[11:lenindex])[diff_table.columns]
# move top-decile detail rows to make room for topdec_row and sum_row
diff_table = diff_table.reindex(index=range(0, lenindex + 2))
diff_table.iloc[15] = diff_table.iloc[13]
diff_table.iloc[14] = diff_table.iloc[12]
diff_table.iloc[13] = diff_table.iloc[11]
diff_table.iloc[12] = sum_row
diff_table.iloc[11] = topdec_row
del topdec_row
else:
diff_table.loc["ALL"] = sum_row
# delete intermediate Pandas DataFrame objects
del gdf
del dframe
# compute non-additive stats in each table cell
count = diff_table['count'].values
diff_table['perc_cut'] = np.divide(
100 * diff_table['tax_cut'].values, count,
out=np.zeros_like(diff_table['tax_cut'].values),
where=count > 0)
diff_table['perc_inc'] = np.divide(
100 * diff_table['tax_inc'].values, count,
out=np.zeros_like(diff_table['tax_inc'].values),
where=count > 0)
diff_table['mean'] = np.divide(
diff_table['tot_change'].values, count,
out=np.zeros_like(diff_table['tot_change'].values),
where=count > 0)
total_change = sum_row['tot_change']
diff_table['share_of_change'] = np.divide(
100 * diff_table['tot_change'].values, total_change,
out=np.zeros_like(diff_table['tot_change'].values),
where=total_change > 0)
quotient = np.divide(
diff_table['atinc2'].values, diff_table['atinc1'].values,
out=np.zeros_like(diff_table['atinc2'].values),
where=diff_table['atinc1'].values != 0)
diff_table['pc_aftertaxinc'] = np.where(
diff_table['atinc1'].values == 0., np.nan, 100 * (quotient - 1))
# delete intermediate Pandas DataFrame objects
del diff_table['atinc1']
del diff_table['atinc2']
del count
del sum_row
# put diff_table columns in correct order
diff_table = diff_table.reindex(columns=DIFF_TABLE_COLUMNS)
# add row names to table if using weighted_deciles or standard_income_bins
if groupby == 'weighted_deciles':
rownames = DECILE_ROW_NAMES
elif groupby == 'standard_income_bins':
rownames = STANDARD_ROW_NAMES
else:
rownames = None
if rownames:
assert len(diff_table.index) == len(rownames)
diff_table.index = rownames
del rownames
# scale table elements
count_vars = ['count', 'tax_cut', 'tax_inc']
scale_vars = ['tot_change', 'ubi',
'benefit_cost_total', 'benefit_value_total']
for col in diff_table.columns:
if col in count_vars:
diff_table[col] *= 1e-6
diff_table.round({col: 2})
elif col in scale_vars:
diff_table[col] *= 1e-9
diff_table.round({col: 3})
else:
diff_table.round({col: 1})
return diff_table
[docs]
def create_diagnostic_table(dframe_list, year_list):
"""
Extract diagnostic table from list of Pandas DataFrame objects
returned from a Calculator dataframe(DIST_VARIABLES) call for
each year in the specified list of years.
Parameters
----------
dframe_list : list of Pandas DataFrame objects containing the variables
year_list : list of calendar years corresponding to the dframe_list
Returns
-------
Pandas DataFrame object containing the diagnostic table
"""
# pylint: disable=too-many-statements
def diagnostic_table_odict(vdf):
"""
Nested function that extracts diagnostic table dictionary from
the specified Pandas DataFrame object, vdf.
Parameters
----------
vdf : Pandas DataFrame object containing the variables
Returns
-------
ordered dictionary of variable names and aggregate weighted values
"""
# aggregate weighted values expressed in millions or billions
in_millions = 1.0e-6
in_billions = 1.0e-9
odict = collections.OrderedDict()
# total number of filing units
wghts = vdf['s006']
odict['Returns (#m)'] = round(wghts.sum() * in_millions, 2)
# adjusted gross income
agi = vdf['c00100']
odict['AGI ($b)'] = round((agi * wghts).sum() * in_billions, 3)
# number of itemizers
val = (wghts[vdf['c04470'] > 0.].sum())
odict['Itemizers (#m)'] = round(val * in_millions, 2)
# itemized deduction
ided1 = vdf['c04470'] * wghts
val = ided1[vdf['c04470'] > 0.].sum()
odict['Itemized Deduction ($b)'] = round(val * in_billions, 3)
# number of standard deductions
val = wghts[vdf['standard'] > 0.].sum()
odict['Standard Deduction Filers (#m)'] = round(val * in_millions, 2)
# standard deduction
sded1 = vdf['standard'] * wghts
val = sded1[vdf['standard'] > 0.].sum()
odict['Standard Deduction ($b)'] = round(val * in_billions, 3)
# personal exemption
val = (vdf['c04600'] * wghts).sum()
odict['Personal Exemption ($b)'] = round(val * in_billions, 3)
# taxable income
val = (vdf['c04800'] * wghts).sum()
odict['Taxable Income ($b)'] = round(val * in_billions, 3)
# regular tax liability
val = (vdf['taxbc'] * wghts).sum()
odict['Regular Tax ($b)'] = round(val * in_billions, 3)
# AMT taxable income
val = (vdf['c62100'] * wghts).sum()
odict['AMT Income ($b)'] = round(val * in_billions, 3)
# total AMT liability
val = (vdf['c09600'] * wghts).sum()
odict['AMT Liability ($b)'] = round(val * in_billions, 3)
# number of people paying AMT
val = wghts[vdf['c09600'] > 0.].sum()
odict['AMT Filers (#m)'] = round(val * in_millions, 2)
# tax before credits
val = (vdf['c05800'] * wghts).sum()
odict['Tax before Credits ($b)'] = round(val * in_billions, 3)
# refundable credits
val = (vdf['refund'] * wghts).sum()
odict['Refundable Credits ($b)'] = round(val * in_billions, 3)
# nonrefundable credits
val = (vdf['c07100'] * wghts).sum()
odict['Nonrefundable Credits ($b)'] = round(val * in_billions, 3)
# reform surtaxes (part of federal individual income tax liability)
val = (vdf['surtax'] * wghts).sum()
odict['Reform Surtaxes ($b)'] = round(val * in_billions, 3)
# other taxes on Form 1040
val = (vdf['othertaxes'] * wghts).sum()
odict['Other Taxes ($b)'] = round(val * in_billions, 3)
# federal individual income tax liability
val = (vdf['iitax'] * wghts).sum()
odict['Ind Income Tax ($b)'] = round(val * in_billions, 3)
# OASDI+HI payroll tax liability (including employer share)
val = (vdf['payrolltax'] * wghts).sum()
odict['Payroll Taxes ($b)'] = round(val * in_billions, 3)
# combined income and payroll tax liability
val = (vdf['combined'] * wghts).sum()
odict['Combined Liability ($b)'] = round(val * in_billions, 3)
# number of tax units with non-positive income tax liability
val = (wghts[vdf['iitax'] <= 0]).sum()
odict['With Income Tax <= 0 (#m)'] = round(val * in_millions, 2)
# number of tax units with non-positive combined tax liability
val = (wghts[vdf['combined'] <= 0]).sum()
odict['With Combined Tax <= 0 (#m)'] = round(val * in_millions, 2)
# UBI benefits
val = (vdf['ubi'] * wghts).sum()
odict['UBI Benefits ($b)'] = round(val * in_billions, 3)
# Total consumption value of benefits
val = (vdf['benefit_value_total'] * wghts).sum()
odict['Total Benefits, Consumption Value ($b)'] = round(
val * in_billions, 3)
# Total dollar cost of benefits
val = (vdf['benefit_cost_total'] * wghts).sum()
odict['Total Benefits Cost ($b)'] = round(val * in_billions, 3)
return odict
# check function arguments
assert isinstance(dframe_list, list)
assert dframe_list
assert isinstance(year_list, list)
assert year_list
assert len(dframe_list) == len(year_list)
assert isinstance(year_list[0], int)
assert isinstance(dframe_list[0], pd.DataFrame)
# construct diagnostic table
tlist = list()
for year, vardf in zip(year_list, dframe_list):
odict = diagnostic_table_odict(vardf)
ddf = pd.DataFrame(data=odict, index=[year], columns=odict.keys())
ddf = ddf.transpose()
tlist.append(ddf)
del odict
return pd.concat(tlist, axis=1)
[docs]
def mtr_graph_data(vdf, year,
mars='ALL',
mtr_measure='combined',
mtr_variable='e00200p',
alt_e00200p_text='',
mtr_wrt_full_compen=False,
income_measure='expanded_income',
pop_quantiles=False,
dollar_weighting=False):
"""
Prepare marginal tax rate data needed by xtr_graph_plot utility function.
Parameters
----------
vdf : a Pandas DataFrame object containing variables and marginal tax rates
(See Calculator.mtr_graph method for required elements of vdf.)
year : integer
specifies calendar year of the data in vdf
mars : integer or string
specifies which filing status subgroup to show in the graph
- 'ALL': include all filing units in sample
- 1: include only single filing units
- 2: include only married-filing-jointly filing units
- 3: include only married-filing-separately filing units
- 4: include only head-of-household filing units
mtr_measure : string
specifies which marginal tax rate to show on graph's y axis
- 'itax': marginal individual income tax rate
- 'ptax': marginal payroll tax rate
- 'combined': sum of marginal income and payroll tax rates
mtr_variable : string
any string in the Calculator.VALID_MTR_VARS set
specifies variable to change in order to compute marginal tax rates
alt_e00200p_text : string
text to use in place of mtr_variable when mtr_variable is 'e00200p';
if empty string then use 'e00200p'
mtr_wrt_full_compen : boolean
see documentation of Calculator.mtr() argument wrt_full_compensation
(value has an effect only if mtr_variable is 'e00200p')
income_measure : string
specifies which income variable to show on the graph's x axis
- 'wages': wage and salary income (e00200)
- 'agi': adjusted gross income, AGI (c00100)
- 'expanded_income': sum of AGI, non-taxable interest income,
non-taxable social security benefits, and employer share of
FICA taxes.
pop_quantiles : boolean
specifies whether or not quantiles contain an equal number
of people (True) or an equal number of filing units (False)
dollar_weighting : boolean
False implies both income_measure percentiles on x axis and
mtr values for each percentile on the y axis are computed
without using dollar income_measure weights (just sampling weights);
True implies both income_measure percentiles on x axis and
mtr values for each percentile on the y axis are computed
using dollar income_measure weights (in addition to sampling weights).
Specifying True produces a graph x axis that shows income_measure
(not filing unit) percentiles.
Returns
-------
dictionary object suitable for passing to xtr_graph_plot utility function
"""
# pylint: disable=too-many-arguments,too-many-statements
# pylint: disable=too-many-locals,too-many-branches
# check validity of function arguments
# . . check income_measure value
weighting_function = weighted_mean
if income_measure == 'wages':
income_var = 'e00200'
income_str = 'Wage'
if dollar_weighting:
weighting_function = wage_weighted
elif income_measure == 'agi':
income_var = 'c00100'
income_str = 'AGI'
if dollar_weighting:
weighting_function = agi_weighted
elif income_measure == 'expanded_income':
income_var = 'expanded_income'
income_str = 'Expanded-Income'
if dollar_weighting:
weighting_function = expanded_income_weighted
else:
msg = ('income_measure="{}" is neither '
'"wages", "agi", nor "expanded_income"')
raise ValueError(msg.format(income_measure))
# . . check mars value
if isinstance(mars, str):
if mars != 'ALL':
msg = 'string value of mars="{}" is not "ALL"'
raise ValueError(msg.format(mars))
elif isinstance(mars, int):
if mars < 1 or mars > 4:
msg = 'integer mars="{}" is not in [1,4] range'
raise ValueError(msg.format(mars))
else:
msg = 'mars="{}" is neither a string nor an integer'
raise ValueError(msg.format(mars))
# . . check mars value if mtr_variable is e00200s
if mtr_variable == 'e00200s' and mars != 2:
msg = 'mtr_variable == "e00200s" but mars != 2'
raise ValueError(msg)
# . . check mtr_measure value
if mtr_measure == 'itax':
mtr_str = 'Income-Tax'
elif mtr_measure == 'ptax':
mtr_str = 'Payroll-Tax'
elif mtr_measure == 'combined':
mtr_str = 'Income+Payroll-Tax'
else:
msg = ('mtr_measure="{}" is neither '
'"itax" nor "ptax" nor "combined"')
raise ValueError(msg.format(mtr_measure))
# . . check vdf
assert isinstance(vdf, pd.DataFrame)
# . . check pop_quantiles and dollar_weighting
if pop_quantiles:
assert not dollar_weighting
# create 'table_row' column given specified income_var and dollar_weighting
dfx = add_quantile_table_row_variable(
vdf, income_var, 100,
pop_quantiles=pop_quantiles,
weight_by_income_measure=dollar_weighting
)
# split dfx into groups specified by 'table_row' column
gdfx = dfx.groupby('table_row', observed=False, as_index=False)
# apply the weighting_function to percentile-grouped mtr values
mtr1_series = gdfx.apply(
weighting_function, 'mtr1', include_groups=False
).values[:, 1]
mtr2_series = gdfx.apply(
weighting_function, 'mtr2', include_groups=False
).values[:, 1]
# construct DataFrame containing the two mtr?_series
lines = pd.DataFrame()
lines['base'] = mtr1_series
lines['reform'] = mtr2_series
# construct dictionary containing merged data and auto-generated labels
data = dict()
data['lines'] = lines
if dollar_weighting:
income_str = 'Dollar-weighted {}'.format(income_str)
mtr_str = 'Dollar-weighted {}'.format(mtr_str)
data['ylabel'] = '{} MTR'.format(mtr_str)
xlabel_str = 'Baseline {} Percentile'.format(income_str)
if mars != 'ALL':
xlabel_str = '{} for MARS={}'.format(xlabel_str, mars)
data['xlabel'] = xlabel_str
var_str = '{}'.format(mtr_variable)
if mtr_variable == 'e00200p' and alt_e00200p_text != '':
var_str = '{}'.format(alt_e00200p_text)
if mtr_variable == 'e00200p' and mtr_wrt_full_compen:
var_str = '{} wrt full compensation'.format(var_str)
title_str = 'Mean Marginal Tax Rate for {} by Income Percentile'
title_str = title_str.format(var_str)
if mars != 'ALL':
title_str = '{} for MARS={}'.format(title_str, mars)
title_str = '{} for {}'.format(title_str, year)
data['title'] = title_str
return data
[docs]
def atr_graph_data(vdf, year,
mars='ALL',
atr_measure='combined',
pop_quantiles=False):
"""
Prepare average tax rate data needed by xtr_graph_plot utility function.
Parameters
----------
vdf : a Pandas DataFrame object containing variables and tax liabilities
(See Calculator.atr_graph method for required elements of vdf.)
year : integer
specifies calendar year of the data in vdf
mars : integer or string
specifies which filing status subgroup to show in the graph
- 'ALL': include all filing units in sample
- 1: include only single filing units
- 2: include only married-filing-jointly filing units
- 3: include only married-filing-separately filing units
- 4: include only head-of-household filing units
atr_measure : string
specifies which average tax rate to show on graph's y axis
- 'itax': average individual income tax rate
- 'ptax': average payroll tax rate
- 'combined': sum of average income and payroll tax rates
pop_quantiles : boolean
specifies whether or not quantiles contain an equal number
of people (True) or an equal number of filing units (False)
Returns
-------
dictionary object suitable for passing to xtr_graph_plot utility function
"""
# pylint: disable=too-many-locals,too-many-statements
# check validity of function arguments
# . . check mars value
if isinstance(mars, str):
if mars != 'ALL':
msg = 'string value of mars="{}" is not "ALL"'
raise ValueError(msg.format(mars))
elif isinstance(mars, int):
if mars < 1 or mars > 4:
msg = 'integer mars="{}" is not in [1,4] range'
raise ValueError(msg.format(mars))
else:
msg = 'mars="{}" is neither a string nor an integer'
raise ValueError(msg.format(mars))
# . . check atr_measure value
if atr_measure == 'combined':
atr_str = 'Income+Payroll-Tax'
elif atr_measure == 'itax':
atr_str = 'Income-Tax'
elif atr_measure == 'ptax':
atr_str = 'Payroll-Tax'
else:
msg = ('atr_measure="{}" is neither '
'"itax" nor "ptax" nor "combined"')
raise ValueError(msg.format(atr_measure))
# . . check vdf object
assert isinstance(vdf, pd.DataFrame)
# determine last bin that contains non-positive expanded_income values
weights = vdf['s006']
nonpos = np.array(vdf['expanded_income'] <= 0, dtype=bool)
nonpos_frac = weights[nonpos].sum() / weights.sum()
num_bins_with_nonpos = int(math.ceil(100 * nonpos_frac))
# create 'table_row' column
dfx = add_quantile_table_row_variable(vdf, 'expanded_income', 100,
pop_quantiles=pop_quantiles)
# specify which 'table_row' are included
include = [0] * num_bins_with_nonpos + [1] * (100 - num_bins_with_nonpos)
included = np.array(include, dtype=bool)
# split dfx into groups specified by 'table_row' column
gdfx = dfx.groupby('table_row', observed=False, as_index=False)
# apply weighted_mean function to percentile-grouped values
avginc_series = gdfx.apply(
weighted_mean, 'expanded_income', include_groups=False
).values[:, 1]
avgtax1_series = gdfx.apply(
weighted_mean, 'tax1', include_groups=False
).values[:, 1]
avgtax2_series = gdfx.apply(
weighted_mean, 'tax2', include_groups=False
).values[:, 1]
# compute average tax rates for each included income percentile
atr1_series = np.zeros(avginc_series.shape)
atr1_series[included] = np.divide(
avgtax1_series[included], avginc_series[included],
out=np.zeros_like(avgtax1_series[included]),
where=avginc_series[included] != 0)
atr2_series = np.zeros(avginc_series.shape)
atr2_series[included] = np.divide(
avgtax2_series[included], avginc_series[included],
out=np.zeros_like(avgtax2_series[included]),
where=avginc_series[included] != 0)
# construct DataFrame containing the two atr?_series
lines = pd.DataFrame()
lines['base'] = atr1_series
lines['reform'] = atr2_series
# include only percentiles with average income no less than min_avginc
lines = lines[included]
# construct dictionary containing plot lines and auto-generated labels
data = dict()
data['lines'] = lines
data['ylabel'] = '{} Average Tax Rate'.format(atr_str)
xlabel_str = 'Baseline Expanded-Income Percentile'
if mars != 'ALL':
xlabel_str = '{} for MARS={}'.format(xlabel_str, mars)
data['xlabel'] = xlabel_str
title_str = 'Average Tax Rate by Income Percentile'
if mars != 'ALL':
title_str = '{} for MARS={}'.format(title_str, mars)
title_str = '{} for {}'.format(title_str, year)
data['title'] = title_str
return data
[docs]
def xtr_graph_plot(data,
width=850,
height=500,
xlabel='',
ylabel='',
title='',
legendloc='bottom_right'):
"""
Plot marginal/average tax rate graph using data returned from either the
mtr_graph_data function or the atr_graph_data function.
Parameters
----------
data : dictionary object returned from ?tr_graph_data() utility function
width : integer
width of plot expressed in pixels
height : integer
height of plot expressed in pixels
xlabel : string
x-axis label; if '', then use label generated by ?tr_graph_data
ylabel : string
y-axis label; if '', then use label generated by ?tr_graph_data
title : string
graph title; if '', then use title generated by ?tr_graph_data
legendloc : string
options: 'top_right', 'top_left', 'bottom_left', 'bottom_right'
specifies location of the legend in the plot
Returns
-------
bokeh.plotting figure object containing a raster graphics plot
Notes
-----
USAGE EXAMPLE::
gdata = mtr_graph_data(...)
gplot = xtr_graph_plot(gdata)
THEN when working interactively in a Python notebook::
bp.show(gplot)
OR when executing script using Python command-line interpreter::
bp.output_file('graph-name.html', title='?TR by Income Percentile')
bp.show(gplot) [OR bp.save(gplot) WILL JUST WRITE FILE TO DISK]
WILL VISUALIZE GRAPH IN BROWSER AND WRITE GRAPH TO SPECIFIED HTML FILE
To convert the visualized graph into a PNG-formatted file, click on
the "Save" icon on the Toolbar (located in the top-right corner of
the visualized graph) and a PNG-formatted file will written to your
Download directory.
The ONLY output option the bokeh.plotting figure has is HTML format,
which (as described above) can be converted into a PNG-formatted
raster graphics file. There is no option to make the bokeh.plotting
figure generate a vector graphics file such as an EPS file.
"""
# pylint: disable=too-many-arguments
if title == '':
title = data['title']
fig = bp.figure(width=width, height=height, title=title)
fig.title.text_font_size = '12pt'
lines = data['lines']
fig.line(lines.index, lines.base,
line_color='blue', line_width=3, legend_label='Baseline')
fig.line(lines.index, lines.reform,
line_color='red', line_width=3, legend_label='Reform')
fig.circle(0, 0, visible=False) # force zero to be included on y axis
if xlabel == '':
xlabel = data['xlabel']
fig.xaxis.axis_label = xlabel
fig.xaxis.axis_label_text_font_size = '12pt'
fig.xaxis.axis_label_text_font_style = 'normal'
if ylabel == '':
ylabel = data['ylabel']
fig.yaxis.axis_label = ylabel
fig.yaxis.axis_label_text_font_size = '12pt'
fig.yaxis.axis_label_text_font_style = 'normal'
fig.legend.location = legendloc
fig.legend.label_text_font = 'times'
fig.legend.label_text_font_style = 'italic'
fig.legend.label_width = 2
fig.legend.label_height = 2
fig.legend.label_standoff = 2
fig.legend.glyph_width = 14
fig.legend.glyph_height = 14
fig.legend.spacing = 5
fig.legend.padding = 5
return fig
[docs]
def pch_graph_data(vdf, year, pop_quantiles=False):
"""
Prepare percentage change in after-tax expanded income data needed by
pch_graph_plot utility function.
Parameters
----------
vdf : a Pandas DataFrame object containing variables
(See Calculator.pch_graph method for required elements of vdf.)
year : integer
specifies calendar year of the data in vdf
pop_quantiles : boolean
specifies whether or not quantiles contain an equal number
of people (True) or an equal number of filing units (False)
Returns
-------
dictionary object suitable for passing to pch_graph_plot utility function
"""
# pylint: disable=too-many-locals
# check validity of function arguments
assert isinstance(vdf, pd.DataFrame)
# determine last bin that contains non-positive expanded_income values
weights = vdf['s006']
nonpos = np.array(vdf['expanded_income'] <= 0, dtype=bool)
nonpos_frac = weights[nonpos].sum() / weights.sum()
num_bins_with_nonpos = int(math.ceil(100 * nonpos_frac))
# create 'table_row' column
dfx = add_quantile_table_row_variable(vdf, 'expanded_income', 100,
pop_quantiles=pop_quantiles)
# specify which 'table_row' are included
include = [0] * num_bins_with_nonpos + [1] * (100 - num_bins_with_nonpos)
included = np.array(include, dtype=bool)
# split dfx into groups specified by 'table_row' column
gdfx = dfx.groupby('table_row', observed=False, as_index=False)
# apply weighted_mean function to percentile-grouped values
avginc_series = gdfx.apply(
weighted_mean, 'expanded_income', include_groups=False
).values[:, 1]
change_series = gdfx.apply(
weighted_mean, 'chg_aftinc', include_groups=False
).values[:, 1]
# compute percentage change statistic each included income percentile
pch_series = np.zeros(avginc_series.shape)
pch_series[included] = np.divide(
change_series[included], avginc_series[included],
out=np.zeros_like(change_series[included]),
where=avginc_series[included] != 0)
# construct DataFrame containing the pch_series expressed as percent
line = pd.DataFrame()
line['pch'] = pch_series * 100
# include only percentiles with average income no less than min_avginc
line = line[included]
# construct dictionary containing plot line and auto-generated labels
data = dict()
data['line'] = line
data['ylabel'] = 'Change in After-Tax Expanded Income'
data['xlabel'] = 'Baseline Expanded-Income Percentile'
title_str = ('Percentage Change in After-Tax Expanded Income '
'by Income Percentile')
title_str = '{} for {}'.format(title_str, year)
data['title'] = title_str
return data
[docs]
def pch_graph_plot(data,
width=850,
height=500,
xlabel='',
ylabel='',
title=''):
"""
Plot percentage change in after-tax expanded income using data returned
from the pch_graph_data function.
Parameters
----------
data : dictionary object returned from ?tr_graph_data() utility function
width : integer
width of plot expressed in pixels
height : integer
height of plot expressed in pixels
xlabel : string
x-axis label; if '', then use label generated by pch_graph_data
ylabel : string
y-axis label; if '', then use label generated by pch_graph_data
title : string
graph title; if '', then use title generated by pch_graph_data
Returns
-------
bokeh.plotting figure object containing a raster graphics plot
Notes
-----
See Notes to xtr_graph_plot function.
"""
# pylint: disable=too-many-arguments
if title == '':
title = data['title']
fig = bp.figure(width=width, height=height, title=title)
fig.title.text_font_size = '12pt'
line = data['line']
fig.line(line.index, line.pch, line_color='blue', line_width=3)
fig.circle(0, 0, visible=False) # force zero to be included on y axis
zero_grid_line_range = range(0, 101)
zero_grid_line_height = [0] * len(zero_grid_line_range)
fig.line(zero_grid_line_range, zero_grid_line_height,
line_color='black', line_width=1)
if xlabel == '':
xlabel = data['xlabel']
fig.xaxis.axis_label = xlabel
fig.xaxis.axis_label_text_font_size = '12pt'
fig.xaxis.axis_label_text_font_style = 'normal'
if ylabel == '':
ylabel = data['ylabel']
fig.yaxis.axis_label = ylabel
fig.yaxis.axis_label_text_font_size = '12pt'
fig.yaxis.axis_label_text_font_style = 'normal'
fig.yaxis[0].formatter = PrintfTickFormatter(format='%.1f')
# return fig # bokeh 3.4.1 cannot save this figure for some unknown reason
return None
[docs]
def write_graph_file(figure, filename, title):
"""
Write HTML file named filename containing figure.
The title is the text displayed in the browser tab.
Parameters
----------
figure : bokeh.plotting figure object
filename : string
name of HTML file to which figure is written; should end in .html
title : string
text displayed in browser tab when HTML file is displayed in browser
Returns
-------
Nothing
"""
delete_file(filename)
if figure:
bp.output_file(filename=filename, title=title)
bp.save(figure)
[docs]
def isoelastic_utility_function(consumption, crra, cmin):
"""
Calculate and return utility of consumption.
Parameters
----------
consumption : float
consumption for a filing unit
crra : non-negative float
constant relative risk aversion parameter
cmin : positive float
consumption level below which marginal utility is assumed to be constant
Returns
-------
utility of consumption
"""
if consumption >= cmin:
if crra == 1.0:
return math.log(consumption)
return math.pow(consumption, (1.0 - crra)) / (1.0 - crra)
# else if consumption < cmin
if crra == 1.0:
tu_at_cmin = math.log(cmin)
else:
tu_at_cmin = math.pow(cmin, (1.0 - crra)) / (1.0 - crra)
mu_at_cmin = math.pow(cmin, -crra)
tu_at_c = tu_at_cmin + mu_at_cmin * (consumption - cmin)
return tu_at_c
[docs]
def expected_utility(consumption, probability, crra, cmin):
"""
Calculate and return expected utility of consumption.
Parameters
----------
consumption : numpy array
consumption for each filing unit
probability : numpy array
samplying probability of each filing unit
crra : non-negative float
constant relative risk aversion parameter of isoelastic utility function
cmin : positive float
consumption level below which marginal utility is assumed to be constant
Returns
-------
expected utility of consumption array
"""
utility = consumption.apply(isoelastic_utility_function,
args=(crra, cmin,))
return np.inner(utility, probability)
[docs]
def certainty_equivalent(exputil, crra, cmin):
"""
Calculate and return certainty-equivalent of exputil of consumption
assuming an isoelastic utility function with crra and cmin as parameters.
Parameters
----------
exputil : float
expected utility value
crra : non-negative float
constant relative risk aversion parameter of isoelastic utility function
cmin : positive float
consumption level below which marginal utility is assumed to be constant
Returns
-------
certainty-equivalent of specified expected utility, exputil
"""
if crra == 1.0:
tu_at_cmin = math.log(cmin)
else:
tu_at_cmin = math.pow(cmin, (1.0 - crra)) / (1.0 - crra)
if exputil >= tu_at_cmin:
if crra == 1.0:
return math.exp(exputil)
return math.pow((exputil * (1.0 - crra)), (1.0 / (1.0 - crra)))
mu_at_cmin = math.pow(cmin, -crra)
return ((exputil - tu_at_cmin) / mu_at_cmin) + cmin
[docs]
def ce_aftertax_expanded_income(df1, df2,
custom_params=None,
require_no_agg_tax_change=True):
"""
Return dictionary that contains certainty-equivalent of the
expected utility of after-tax expanded income computed for
several constant-relative-risk-aversion parameter values
for each of two Pandas DataFrame objects: df1, which represents
the pre-reform situation, and df2, which represents the
post-reform situation. Both DataFrame objects must contain
's006', 'combined', and 'expanded_income' columns.
IMPORTANT NOTES: These normative welfare calculations are very simple.
It is assumed that utility is a function of only consumption, and that
consumption is equal to after-tax income. This means that any assumed
responses that change work effort will not affect utility via the
correpsonding change in leisure. And any saving response to changes
in after-tax income do not affect consumption.
The cmin value is the consumption level below which marginal utility
is considered to be constant. This allows the handling of filing units
with very low or even negative after-tax expanded income in the
expected-utility and certainty-equivalent calculations.
"""
# pylint: disable=too-many-locals
# check consistency of the two DataFrame objects
assert isinstance(df1, pd.DataFrame)
assert isinstance(df2, pd.DataFrame)
assert df1.shape == df2.shape
# specify utility function parameters
if custom_params:
crras = custom_params['crra_list']
for crra in crras:
assert crra >= 0
cmin = custom_params['cmin_value']
assert cmin > 0
else:
crras = [0, 1, 2, 3, 4]
cmin = 1000
# compute aggregate combined tax revenue and aggregate after-tax income
billion = 1.0e-9
cedict = dict()
cedict['tax1'] = weighted_sum(df1, 'combined') * billion
cedict['tax2'] = weighted_sum(df2, 'combined') * billion
if require_no_agg_tax_change:
diff = cedict['tax2'] - cedict['tax1']
if abs(diff) >= 0.0005:
msg = 'Aggregate taxes not equal when required_... arg is True:'
msg += '\n taxes1= {:9.3f}'
msg += '\n taxes2= {:9.3f}'
msg += '\n txdiff= {:9.3f}'
msg += ('\n(adjust _LST or other parameter to bracket txdiff=0 '
'and then interpolate)')
raise ValueError(msg.format(cedict['tax1'], cedict['tax2'], diff))
cedict['inc1'] = weighted_sum(df1, 'expanded_income') * billion
cedict['inc2'] = weighted_sum(df2, 'expanded_income') * billion
# calculate sample-weighted probability of each filing unit
prob_raw = np.divide(df1['s006'], df1['s006'].sum())
# handle any rounding error in probability calculation
prob = np.divide(prob_raw, prob_raw.sum())
# calculate after-tax income of each filing unit in df1 and df2
ati1 = df1['expanded_income'] - df1['combined']
ati2 = df2['expanded_income'] - df2['combined']
# calculate certainty-equivaluent after-tax income in df1 and df2
cedict['crra'] = crras
ce1 = list()
ce2 = list()
for crra in crras:
eu1 = expected_utility(ati1, prob, crra, cmin)
ce1.append(certainty_equivalent(eu1, crra, cmin))
eu2 = expected_utility(ati2, prob, crra, cmin)
ce2.append(certainty_equivalent(eu2, crra, cmin))
cedict['ceeu1'] = ce1
cedict['ceeu2'] = ce2
# ... return cedict
return cedict
[docs]
def read_egg_csv(fname, index_col=None):
"""
Read from egg the file named fname that contains CSV data and
return pandas DataFrame containing the data.
"""
try:
path_in_egg = implibres.files('taxcalc').joinpath(fname)
with implibres.as_file(path_in_egg) as rname:
vdf = pd.read_csv(rname, index_col=index_col)
except Exception:
raise ValueError(f'could not read {fname} data from egg')
# cannot call read_egg_ function in unit tests
return vdf # pragma: no cover
[docs]
def read_egg_json(fname):
"""
Read from egg the file named fname that contains JSON data and
return dictionary containing the data.
"""
try:
path_in_egg = implibres.files('taxcalc').joinpath(fname)
with implibres.as_file(path_in_egg) as rname:
vdf = json.loads(rname)
except Exception:
raise ValueError(f'could not read {fname} data from egg')
# cannot call read_egg_ function in unit tests
return pdict # pragma: no cover
[docs]
def delete_file(filename):
"""
Remove specified file if it exists.
"""
if os.path.isfile(filename):
os.remove(filename)
[docs]
def bootstrap_se_ci(data, seed, num_samples, statistic, alpha):
"""
Return bootstrap estimate of standard error of statistic and
bootstrap estimate of 100*(1-2*alpha)% confidence interval for statistic
in a dictionary along with specified seed and nun_samples (B) and alpha.
"""
assert isinstance(data, np.ndarray)
assert isinstance(seed, int)
assert isinstance(num_samples, int)
assert callable(statistic) # function that computes statistic from data
assert isinstance(alpha, float)
bsest = dict()
bsest['seed'] = seed
np.random.seed(seed)
dlen = len(data)
idx = np.random.randint(low=0, high=dlen, size=(num_samples, dlen))
samples = data[idx]
stat = statistic(samples, axis=1)
bsest['B'] = num_samples
bsest['se'] = np.std(stat, ddof=1)
stat = np.sort(stat)
bsest['alpha'] = alpha
bsest['cilo'] = stat[int(round(alpha * num_samples)) - 1]
bsest['cihi'] = stat[int(round((1 - alpha) * num_samples)) - 1]
return bsest
[docs]
def json_to_dict(json_text):
"""
Convert specified JSON text into an ordered Python dictionary.
Parameters
----------
json_text: string
JSON text.
Raises
------
ValueError:
if json_text contains a JSON syntax error.
Returns
-------
dictionary: collections.OrderedDict
JSON data expressed as an ordered Python dictionary.
"""
try:
ordered_dict = json.loads(json_text,
object_pairs_hook=collections.OrderedDict)
except ValueError as valerr:
text_lines = json_text.split('\n')
msg = 'Text below contains invalid JSON:\n'
msg += str(valerr) + '\n'
msg += 'Above location of the first error may be approximate.\n'
msg += 'The invalid JSON text is between the lines:\n'
bline = ('XXXX----.----1----.----2----.----3----.----4'
'----.----5----.----6----.----7')
msg += bline + '\n'
linenum = 0
for line in text_lines:
linenum += 1
msg += '{:04d}{}'.format(linenum, line) + '\n'
msg += bline + '\n'
raise ValueError(msg)
return ordered_dict